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Existence of θ -vacuum states in Yang–Mills theories defined over asymptotically flat
space-times examined taking into account not only the topology but the complicated
causal structure of these space-times, too. By a result of Galloway apparently causality
makes all vacuum states, seen by a distant observer, homotopically equivalent making
the introduction of θ -terms unnecessary.

But a more careful analysis shows that certain twisted classical vacuum states survive
even in this case eventually leading to the conclusion that the concept of “θ -vacua” is
meaningful in the case of general Yang–Mills theories. We give a classification of these
vacuum states based on Isham’s results showing that the Yang–Mills vacuum has the
same complexity as in the flat Minkowskian case hence the general CP-problem is
not more complicated than the well-known flat one. We also construct the θ vacua
rigorously via geometric quantization.
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1. INTRODUCTION: THE MINKOWSKIAN YANG–MILLS THEORY

The famous solution of the long-standing U (1)-problem in the Standard
Model via instanton effects was presented by ’t Hooft about three decades ago (’t
Hooft, 1976, 1986). This solution demonstrated that instantons i.e., finite-action
self-dual solutions of the Euclidean Yang–Mills-equations discovered by Belavin
et al. (1975) should be taken seriously in gauge theories. Another problem arose
in these models over the Minkowskian space-time, however: if instantons really
exist, they induce a P-hence CP-violating so-called θ -term in the effective Yang–
Mills action. But according to accurate experimental results, such a CP-violation
cannot occur in QCD, for instance. The most accepted solution to this problem is
the so-called Peccei–Quinn mechanism (Peccei and Quinn, 1977). A consequence
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of this mechanism is the existence of a light particle, the so-called axion. This
particle has not been observed yet, however.

The question naturally arises whether or not such problematic θ -term must
be introduced over more generic space-times. The aim of our paper is to claim
that the answer is yes.

First, let us summarize the vacuum structure of a gauge theory over
Minkowski space-time following basic text books (Cheng and Li, 1984; Kaku,
1993). Let E be a complex vector bundle over an oriented and time oriented
Lorentzian manifold (M,g) belonging to a finite dimensional complex represen-
tation of G. Without loss of generality we choose the gauge group G to be a
compact Lie group. Consider a G-connection ∇ on this bundle with curvature F∇ ;
we take the usual Yang–Mills action (by fixing the coupling to be 1):

S(∇, g) = − 1

8π2

∫

M

tr (F∇ ∧ ∗F∇) , (1)

whose Euler–Lagrange equations are

d∇F = 0, d∇ ∗ F = 0.

Here ∗ is the Hodge operation induced by the orientation and the metric on M .
In our present case M = R

4 and usually the metric g is fixed and supposed to be
the Minkowskian one on R

4. Moreover all G-bundles E are trivial consequently
by choosing a particular frame on E, the connection ∇ can be identified globally
with a g-valued 1-form A.

The simplest solution is the vacuum i.e., a flat connection: F∇ = 0. By simply
connectedness of R

4 such gauge fields can be written in the form A = f −1df ,
where f : R

4 → G is a smooth function.
But by the existence of a global temporal gauge on R

4 (in this gauge flat
connections are independent of the “time” variable) it is enough to consider
the restriction of f to a spacelike submanifold of Minkowski space-time i.e.,
f : R

3 → G. Minkowski space-time is asymptotically flat as well, so there is a
point i0 called spacelike infinity. This point represents the “infinity of space” hence
can be added to R

3 completing it to the three-sphere R
3 ∪ {i0} = S3. It is well-

known that vacuum fields (possibly after a null-homotopic gauge-transformation
around i0) extend to the whole S3 consequently classical vacua are classified by
maps f : S3 → G. These maps up to homotopy are given by elements of π3(G).
For typical compact Lie groups π3(G) is not trivial. This fact can be interpreted as
classical vacua are separated from each other by energy barriers of finite height i.e.,
it is impossible to deform two vacua of different winding numbers into each other
only through vacuum states. Hence homotopy equivalence reflects the dynamical
structure of the theory.
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On the other hand, vacua are also acted upon by the gauge group. For simplic-
ity assume G ∼= SU (2). In this case π3(SU (2)) ∼= Z. If f1, f2 are vacua of winding
numbers n1, n2 respectively, there is a gauge transformation g : S3 → SU (2) of
winding number n2 − n1 satisfying gf1 = f2. Consequently we can see that the
concept of dynamical equivalence of vacua reflecting the dynamics of the theory
(i.e., the homotopy equivalence of maps f : S3 → SU (2)) is different from that
of symmetry equivalence of vacua representing the symmetry of the gauge theory
(i.e., the gauge equivalence of the above maps).

To avoid this discrepancy, we proceed as follows. Suppose we have con-
structed the Hilbert space H

R
4 of the corresponding quantum gauge theory. If

|n〉 ∈ H
R

4 denotes the quantum vacuum state belonging to a classical vacuum f

of winding number n, the simplest way to construct a state which is invariant
(up to phase) under both dynamical (i.e., homotopy) and symmetry (i.e., gauge)
equivalence is to formally introduce the quantum state

|θ〉 :=
∞∑

n=−∞
einθ |n〉 ∈ H

R
4 , θ ∈ R. (2)

These formal sums are referred to as “θ -vacua.”
From the physical point of view, the introduction of θ -vacua is also necessary.

Although the vacuum states of different winding numbers are separated classically,
they can be joined semi-classically i.e., by a tunneling induced by non-trivial
instantons of the corresponding Euclidean gauge theory. Indeed, as it is well
known, the SU (2) instanton number is an element k ∈ H 4(S4, Z) � Z (here S4

is the one-point conformal compactification of the Euclidean flat R
4. Note that

the notion of “instanton number” comes from a very different compactification
compared with the derivation of “vacuum winding number”). If two vacua, |n1〉,
|n2〉 (n1, n2 ∈ π3(SU (2)) � Z) are given then there is an instanton of instanton
number n2 − n1 ∈ H 4(S4, Z) � Z tunneling between them in temporal gauge
(Cheng and Li, 1984; Kaku, 1993). In other words the true vacuum states are
linear combinations of the vacuum states of unique winding numbers yielding
again (2).

But the value of θ cannot be changed in any order of perturbation i.e., it should
be treated as a physical parameter of the theory; this implies that tunnelings induce
the effective term

θ

8π2

∫

R
4

tr (F∇ ∧ F∇)

in addition to the action (1). But it is not difficult to see that such a term vi-
olates the parity symmetry P of the theory resulting in the violation of the
CP-symmetry.
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In summary, we have seen that there are at least three different ways to
introduce θ -parameters in Yang–Mills theories over Minkowskian space-time:

(i) θ is introduced to fill in the gap between the notions of dynamical
(i.e., homotopy) and symmetry (i.e., gauge) equivalence of Yang–Mills
vacua. This approach is pure mathematical in its nature;

(ii) θ must be introduced because by instanton effects vacua of definite
winding numbers are superposed in the underlying semi-classical Yang–
Mills theory;

(iii) θ must be introduced by “naturality arguments” i.e., nothing prevents
us to extend the Yang–Mills action at the full quantum level by a P -
violating term tr (F∇ ∧ F∇) with coupling constant θ .

There is a correspondence between the above three characterizations of the
θ in flat Minkowskian space-time but in the case of general space-times, clear and
careful distinction must be made until a relation or correspondence between the
three notions is established. Clearly, (i) is related to the topology of the space-time
and the gauge group hence it is relatively easy to check whether or not it remains
valid in the general case. Concept (ii) is related to the semi-classical structure of
the general Yang–Mills theory especially to the existence of instanton solutions
in the Wick-rotated theory and their relationship with vacuum tunneling. The
validity of concept (iii) is the most subtle one: we need lot of information on
the global non-perturbative aspects of a general quantum Yang–Mills theory to
check if any θ -term survives quantum corrections. In the present state of affairs,
having no adequate general theory of Wick rotation, instantons and their physical
interpretation, non-perturbative aspects of general Yang–Mills theories etc., we
can examine only the validity of concept (i) in the general case. Its validity or
invalidity may serve as a good indicator for the existence and role of θ -terms in
general Yang–Mills theories.

The analysis of the vacuum structure of general Yang–Mills theories over
a space-time (M,g) from the point of view of (i) was carried out by Isham
et al. (Deser et al., 1980; Isham, 1983; Isham and Kunstatter, 1982; Isham and
Kunstatter, 1981). In these papers Isham et al. argue that in the general case
concept (i) for introducing θ -terms still continues to hold due to the complicated
topology of the spatial surface S ⊂ M and the gauge group G (Isham, 1983). The
classical vacuum structure of these theories becomes more complicated and we
cannot avoid the introduction of various new CP-violating terms into the effective
Lagrangian (Deser et al., 1980).

We have to emphasize that the approach of Isham et al. to the problem is
pure topological in its nature, however. By a result of Witt (1986) every ori-
ented, connected three-manifold S appears as a Cauchy surface of a physically
reasonable initial data set. It is well-known that the complicated topology of
the spacelike submanifold S leads to appearance of singularities in space-time
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if it arises as the Cauchy development of S. Indeed, an early result of Gannon
(1975) shows that the Cauchy development of a non-simply connected Cauchy
surface is geodesically incomplete i.e., singularities occur. If we accept the Cos-
mic Censorship Hypothesis, these singularities are hidden behind event horizons
resulting in a non-trivial causal structure for these space-times, too. A theorem of
Galloway (1995) (cf. an earlier version assumming stationarity by Chruściel–Wald
(1994)) shows that distant observers can observe only simply connected portions of
asymptotically flat space-times: all topological properties are hidden behind event
horizons, eventually resulting again in a topologically simple effective space-time.
Hence one may doubt if Isham’s conclusions remain valid.

In Section 2 we formulate Yang–Mills theories with an arbitrary compact
gauge group over general asymptotically flat space-times satisfying the null en-
ergy condition with a single globally hyperbolic domain of outer communica-
tion. This model provides a good framework for analysing classical Yang–Mills
vacua over causally non-trivial space-times. In this setup we simply mimic the
above analysis concerning classical Yang–Mills vacua and find that although all
vacua are topologically equivalent on the causally connected regime of the space-
time, the appearance of a natural boundary condition on the event horizon (also
a consequence of the causal structure) introduces non-trivial homotopy classes
again.

In Section 3 we calculate explicitly the homotopy classes of vacua for the
classical groups. A modification appears compared with Isham and other’s pure
topological considerations in the sense that generally the vacuum structure in our
case has exactly the same complexity as in the flat Minkowskian case, a surprising
result. This demonstrates the “stability” of the θ -problem and justifies concept (i)
even in the more general case.

The idea of studying relationship between micro- or virtual black holes,
wormholes and θ -vacua is not new. For example, see Hawking (1996) and Preskil
et al. (1989). An earlier, still incomplete version of this paper appeared in Etesi
(2001).

2. ASYMPTOTICALLY FLAT YANG–MILLS THEORY

The general reference for this chapter is Wald (1984). Let (M,g) be a four
dimensional, oriented and time oriented smooth Lorentzian manifold i.e., a space-
time; choose a complex vector bundle E over M associated to a principal bundle
with compact gauge group G via a finite dimensional complex representation.
Consider a G-connection ∇ on E and a Yang–Mills theory with action (1) over
(M,g). We will focus on vacuum solutions on a gravitational background i.e.,
pairs (∇, g) where ∇ is a smooth flat G-connection on the bundle E while g

is a smooth Lorentzian metric on M . We will suppose that g is a solution of
the vacuum or the coupled Einstein’s equation with a matter field given by a
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stress-energy tensor T obeying the null energy condition. We will refer the col-
lection (E,∇,M, g) to as an Yang–Mills vacuum setup.

We impose two restrictions. First, we will assume that (M,g) contains a
single asymptotically flat region. At a first look (for the precise definitions see e.g.
Wald (1984)) this means that there is a conformal embedding i : (M,g) → (M̃, g̃)
such that the infinitely distant points of M are represented by the connected set
∂i(M) in the inclusion; furthermore this set is divided naturally into three subsets:
the future and past null infinities I± and the spatial infinity i0. We remark that g̃

is not supposed to be smooth in i0, even if (M,g) is smooth.
Now consider the domain of outer communication Ñ ⊆ M̃ defined as Ñ :=

J−(I+) ∩ J+(I−) and N := Ñ ∩ i(M). (Here J±(X) denote the causal future and
past of a subset X in a space-time, respectively). Notice that N = M \ (B ∪ W )
where B and W are the black hole and white hole regions of M , respectively.
The boundary ∂(B ∪ W ) is called the event horizon of these regions. Our second
assumption is that (N, g|N ) is globally hyperbolic. Consequently N ∼= S × R with
S being a Cauchy surface for the domain of outer communication N such that the
image of the Cauchy surface can be completed to a maximal spacelike submanifold
S̃ in M̃ by adding the spacelike infinity i0 ∈ M̃ to it: i(S) ∪ {i0} = S̃.

Before proceeding further we fix notation. Let V be a smooth, compact,
oriented three-manifold (possibly with non-empty boundary), x0 ∈ V \ ∂V and
assume there is a homeomorphism ϕ : V \ ∂V → S̃ such that ϕ(x0) = i0. In this
case we will say that S is homeomorphic to the interior of V . By global hyper-
bolicity, there is a global time function T : N → R. Let St := T −1(t) (t ∈ R) be
a Cauchy surface which is the interior of a compact three-manifold V (notice that
St

∼= St ′ for all t, t ′ ∈ R). Consider a map ϕt : V \ (∂V ∪ {x0}) → N whose image
is ϕt (V \ (∂V ∪ {x0})) = St ⊂ N . The points ϕt (x) = (x, t) of St will be denoted
as xt . Clearly V represents the compactification of a particular Cauchy surface

since V ∼= ϕ−1
t (St ) ∼= i(St ) ∪ {i0} for all t ∈ R. Therefore by abuse of notation we

will often think St ⊂ V for all t ∈ R.
Now we are in a position to address the problem of describing the topology of

Yang–Mills vacua seen by an observer in the domain of outer communication of
the space-time (M,g). Clearly, at least classically, only this part of the space-time
can be relevant for ordinary macroscopic observers. To achieve our goal, we refer
to a general result of Galloway (1995) (for an earlier version assuming stationarity
cf. Chruściel and Wald (1994)).

Theorem 2.1. (Galloway, 1995). Let (M,g) be an asymptotically flat space-time
containing a single asymptotically flat region whose domain of outer communi-
cation (N, g|N ) is globally hyperbolic. Suppose that the null energy condition
holds.

Then N is simply connected i.e., π1(N ) = 1.



838 Etesi

Assume there is a Cauchy surface St of N homeomorphic to the interior of a
compact three-manifold V . Then if ∂V �= ∅, each connected component of ∂V is
homeomorphic to S2.

This rather surprising observation is a consequence of the so-called Topolog-
ical Censorship Theorem of Friedman–Schleich–Witt (1993).

We can see that V , the compactification of a Cauchy surface St for N , is a
simply connected (hence orientable) three-manifold. If M contains black or white
hole domains then ∂V �= ∅ and all boundary components are homeomorphic to a
two-sphere S2 (“the event horizon of a black or white hole in an asymptotically
flat space-time has no handles”).

The following simple lemma ensures us that from a technical viewpoint the
vacuum structure at least over the relevant part (N, g|N ) is exactly the same as in
the Minkowskian case.

Lemma 2.2. Let (M,g) be a space-time as in Theorem 2.1 and (E,∇,M, g) be
a Yang–Mills vacuum setup over it. Consider the domain of outer communication
with the restricted Yang–Mills data (E|N,∇|N,N, g|N ). Then

(i) If ∇|N is flat and smooth then it can be identified with a g-vauled 1-
form A over N and there is a smooth function f : N → G such that
A = f −1df ;

(ii) There is a smooth gauge transformation g : N → G transforming ∇|N
into temporal gauge i.e., there is an A′ = gAg−1 + gdg−1 such that
A′

0 = 0 where A′
0 = A′(gradT ). If A′ is flat then the corresponding f

does not depend on t;
(iii) Fix a t ∈ R and consider the restriction f |St

=: ft : St → G. Then ft

extends smoothly across the spacelike infinity i0 i.e., there is a smooth
function f̃t : S̃t → G, homotopic to ft on St .

Proof: Concerning (i), the restricted bundle E|N is trivial hence any G-
connection on it can be identified with a g-valued 1-form A; simply connectedness
of N implies that any flat connection ∇|N must be the trivial connection hence in
any gauge it can be represented in the form A = f −1df as claimed.

To see (ii) we can write down the required gauge transformation by solving
the ordinary differential equation

gA0g
−1 + g

∂g−1

∂t
= 0

over N ∼= S × R. The solution over a chart U ⊂ S is

g(x, t) = exp

⎛
⎝

t∫

0

A0(x, τ )dτ

⎞
⎠
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with x ∈ U , t ∈ R and exp: g → G being the exponential map. This solution
exists for finite t’s.

The case of part (iii) is also very simple. Notice that there is a neighbourhood
U ⊂ S̃t of i0 such that U \ {i0} ∼= S2 × [0, 1). Consider the restriction ft |S2×{0}
and take the function id: S2 × [1/2, 0) → G sending all elements to the unit
e ∈ G. Then, taking into account that π2(G) = 0 for compact Lie groups, there is
a smooth homotopy from S2 to G along S2 × [0, 1/2] connecting ft |S2×{0} with
id|S2×{1/2}. But this deformed function f̃t extends as the identity to the whole S̃t

and is homotopic to ft on St . �

A pure Yang–Mills theory being conformally invariant, we may consider our
Einstein-matter theory together with a Yang–Mills field over (M̃, g̃) instead of the
original space-time. The restriction of the extended flat Yang–Mills bundle Ẽ|Ñ
is trivial even in this case. Certain physical quantities of the extended theory may
suffer from singularities on the boundary ∂i(M) but classical Yang–Mills vacua
in temporal gauge extend smoothly over the whole (M̃, g̃) as we have seen by the
above lemma. In other words the studying of the vacuum sector of the extended
Yang–Mills theory is correct.

Summing up, we can see that dynamically (i.e., homotopically) inequivalent
vacua of the Yang–Mills theory are classified by the homotopy classes of smooth
maps f : V → G satisfying f (i0) = e ∈ G, usually written as

[(V, i0), (G, e)]. (3)

Now suppose that (M,g) contains black and white hole(s). In this case V is
a simply connected compact three manifold with boundary by the theorem of
Galloway. Such manifolds, considered as CW-complexes, have only cells of di-
mension less than three. Hence by the Cellular Approximation Theorem (Spanier,
1966), every map f : V → G descends to a homotopic map with values only on
the cells of G having dimension less than three. Being π2(G) = 0, G can be ap-
proximated by the simple Postnikov-tower P2 = K(π1(G), 1) where K(π1(G), 1)
is an Eilenberg–Mac Lane space yielding

[(V, i0), (G, e)] ∼= [V,K(π1(G), 1)] ∼= H 1(V, π1(G)) = 0. (4)

The result is zero because V is simply connected. For details, see for instance
(Spanier, 1966). Consequently all vacuum states are homotopy-equivalent i.e.,
can be deformed into each other only through vacuum states over the domain of
outer communication N of the space-time (M,g). Clearly, classically only this
part is relevant for a distant observer.

This result can be explained from a different point of view as well. Since the
outer part N of M is globally hyperbolic by assumption, the spacelike submanifold
S forms a Cauchy surface for N . Consequently if we know the initial values of
two gauge fields, A and A′ say, on S ⊂ N , we can determine their values over
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the whole outer space-time N ⊂ M by using the field equations. This implies that
the values of the fields A and A′ “beyond” the event horizon in a moment are
irrelevant for an observer outside the black hole. But we just proved that every
vacuum fields restricted to V ⊃ S are homotopic. Roughly speaking, homotopical
differences between Yang–Mills vacua “can be swept” into a black hole.

Via (4) for arbitrary smooth functions f, g : V → G there is a homotopy

FT : V × [0, 1] → G (5)

satisfying FT (x, 0) = f (x) and FT (x, 1) = g(x) and FT (i0, t) = e for all (x, t) ∈
V × [0, 1]. Taking two Cauchy surfaces T −1(t0) =: S0 and T −1(t1) =: S1 we can
regard the two functions as vacua f |S0 := f0 : S0 → G and g|S1 := f1 : S1 → G.
In the homotopy FT the subscript “T ” shows that the “time” required for the
homotopy is measured by the time function T naturally associated to the globally
hyperbolic space-time (M,g).

But on physical grounds, such a deformation or homotopy is effective only if
the vacuum states, corresponding to the inital and final stages of the homotopy, can
be compared by an observer in finite proper time. This means the following. Let
k = 0, 1 and for all xk ∈ Sk for which f0(x0) �= f1(x1) there must exist an observer
γ : R → N moving forward in the region N who can measure hence compare
f0(x0) and f1(x1) i.e., there are τk ∈ R such that a future directed light beam
starting from xk meets γ in γ (τk), and the proper time between γ (τ0) and γ (τ1)
measured by γ is finite. In other words, there is a τ− ∈ R such that C ⊂ J−(γ (τ−))
where C ⊂ S0 × S1 contains the set of all points where f0(x0) �= f1(x1) with
xk ∈ Sk . Because our space-time may contain white hole regions too, we require
the existence of another τ+ < τ− satisfying C ⊂ J+(γ (τ+)) as well. The formal
definition of such “effective” or “observable” homotopies is the following.

Definition 2.3. Let (M,g) be an asymptotically flat space-time with a single
globally hyperbolic domain of outer communication (N, g|N ) and let T : N → R

be an associated time-function. Consider a homotopy of the form (5) and let
C ⊂ S0 × S1 be such that f0(x0) �= f1(x1) with (x0, x1) ∈ C.

Then (5) is called an effective homotopy or observable homotopy if there
is a future directed non-spacelike piecewise smooth curve γ : R → N and fixed
numbers τ± ∈ R such that C ⊂ J±(γ (τ±)).

Remark. We can see that in Minkowski space-time all homotopies of the form
(5) are effective homotopies establishing the structure of the Minkowskian Yang–
Mills vacuum also from a physical viewpoint.

The following lemma is straightforward.

Lemma 2.4. Let (M,g) be a space-time as in Definition 2.3. and consider a
continuous curve x : [0, ε] → V satisfying x(0) ∈ ∂V . Then we have induced
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spacelike curves xk : [0, ε] → Sk (k = 0, 1) given by xk(s) = (x(s), k) and satisfy
xk(0) ∈ H .

The (abstract) homotopy (5) is effective if and only if there is a 0 < δ such
that

FT (x0(s), t) = FT (x1(s), t)

for all 0 ≤ s < δ < ε and t ∈ [0, 1] that is, the homotopy is trivial in the vicinity
of H .

Proof: We rerstrict our attention first to the case H+ = ∂B, the future event
horizon of the black hole regime B. Take a homotopy of the form (5) with
FT (xk(s), k) = fk(xk(s)) (k = 0, 1) and assume FT is effective. By construction
xk(0) ∈ H+ and if f0(x0(0)) �= f1(x1(0)) then there must exist a future directed
non-spacelike curve γ : R → N such that {x0(0), x1(0)} ⊂ J−(γ (τ−)) for some
τ− ∈ R. However this contradicts the definition of the domain of outer com-
munication N consequently we must have xk(0) /∈ H+. We get the same result
for the past white hole horizon H− = ∂W . Therefore xk(0) /∈ H = H+ ∪ H− as
claimed. �

From here we can see that given an abstract homotopy (5), it gives rise to
an effective homotopy if and only if FT is constant along H . This result can be
interpreted as a natural boundary condition on each connected component of ∂V for
effectively deformable vacua dictated by the causal structure. Since each boundary
component in a “moment” is homeomorphic to the two-sphere S2 and π2(G) = 0
we can extend f0, f1 within their homotopy classes in the spirit of part (iii) of
Lemma 2.2 to functions f, g : V → G obeying f (∂V ) = g(∂V ) = e ∈ G. The
same argumentation yields the conditions f (i0) = g(i0) = e. We just remark that
exactly this is the physical reason for keeping the functions as identity in spacelike
infinity i0 when we discuss homotopy classes of vacua over Minkowskian space-
time: the spacelike infinity is invisible for an observer in N .

Therefore the classes of effectively deformable vacua are given by the homo-
topy classes of functions f : V → G with the property f (∂V ) = f (i0) = e ∈ G.
The homotopy is also restricted to obey these boundary conditions. This set is
denoted by

[(V, ∂V, i0), (G, e)] (6)

and replaces (3). To get a more explicit description of this set, we proceed as
follows.

3. HOMOTOPIC CLASSIFICATION

First taking into account that a function f : V → G we are interested in
satisfies that it sends each connected component of ∂V into the unit element e ∈ G,



842 Etesi

we can replace the simply connected, compact three-manifold-with-boundary V

with a closed, simply connected three-manifold W in the following way. Let us
denote by k > 0 the number of connected components of ∂V (i.e., the number of
black holes and white holes). As we have seen, all such component is an S2. Hence
we can glue to each such component a three-ball B3 using the identity function of
S2 to get a three-manifold without boundary

W := V ∪∂V B3 ∪ . . . ∪ B3︸ ︷︷ ︸
k

.

Clearly, f extends as the identity to each ball giving rise to the function
f : W → G. Consequently, if we fix a point xn in each ball (n ≤ k), then we
may equivalently consider functions obeying f (x1) = . . . = f (xk) = f (i0) = e.
Modifying the allowed homotopies to obey this constraint, we can replace the
homotopy set (6) by

[(W, x1, . . . , xk, i0), (G, e)]

(of course if k = 0 then no point except i0 is distinguished in W ). We prove the
following proposition:

Proposition 3.1. Fix a number k > 0 and consider the connected, closed, sim-
ply connected three-manifold with k + 1 distinguished points (W, x1, . . . , xk, i0)
constructed above. Denote by (W, i0) the same space with only one distinguished
point. Then there is a natural bijection

[(W, x1, . . . , xk, i0), (G, e)] ∼= [(W, i0), (G, e)]

by forgetting the points x1, . . . , xk ∈ W and modifying the allowed homotopies
accordingly.

Proof: Fix a number k ≥ 0. First it is straightforward that if two functions, f0

and f1 are homotopic in [(W, x1, . . . , xk, i0), (G, e)] then they represent the same
homotopy class in [(W, i0), (G, e)] i.e., they are homotopic in the later set as well.
This is because the allowed homotopies in [(W, i0), (G, e)] are less restrictive than
in [(W, x1, . . . , xk, i0), (G, e)].

Conversely, it is not difficult to see that in each class [f ] ∈ [(W, i0), (G, e)]
there is a representant which belongs to [(W, x1, . . . , xk, i0), (G, e)]. Indeed,
choose an arbitrary representant f ∈ [f ] ∈ [(W, i0), (G, e)] and consider the pre-
image f −1(e) ⊂ W . This pre-image contains the point i0 ∈ W by construction.
Taking into account that W is path connected, we can deform f −1(e) to con-
tain the points x1, . . . , xk as well producing a representant which belongs to
[(W, x1, . . . , xk, i0), (G, e)].

Now suppose that there are two functions f0 and f1 which are homotopic in
[(W, i0), (G, e)] i.e., there is a continuous function F : (W, i0) × [0, 1] → (G, e)
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with

F (x, 0) = f0(x), F (x, 1) = f1(x),

F (i0, t) = e for all t ∈ [0, 1] and x ∈ (W, i0).

For the sake of simplicity, assume they represent elements in [(W, x1, . . . ,

xk, i0), (G, e)], too. Then we have to prove that they are also homotopic in
[(W, x1, . . . , xk, i0), (G, e)] i.e., there is a function F ′ : (W, x1, . . . , xk, i0) ×
[0, 1] → (G, e) with the property

F ′(x, 0) = f0(x), F ′(x, 1) = f1(x),

F ′(x1, t) = . . . = F ′(xk, t) = F ′(i0, t) = e

for all t ∈ [0, 1] and x ∈ (W, x1, . . . , xk, i0). From here we can see that the orbit
of an arbitrary distinguished point xn is a loop ln : [0, 1] → G under the homotopy
F while the constant loop in the case of F ′. Hence if these loops are homotopically
trivial in G then we can deform F into the homotopy F ′ by shrinking the loops
l1, . . . , lk .

Now we prove that this is always possible. First, if π1(G) = 1 i.e., the com-
pact Lie group is simply connected then certainly each loop ln is homotopic
to the constant loop. Consequently assume π1(G) �= 1. Consider a distinguished
point xn ∈ W and two paths an : [0, 1/2] → W with an(0) = i0 and an(1/2) = xn

and bn : [1/2, 1] → W with bn(1/2) = xn and bn(1) = i0. These give rise to a
continuous loop bn ∗ an : [0, 1] → W with bn ∗ an(0) = bn ∗ an(1) = i0. Here
∗ refers to the juxtaposition of curves, loops, etc. The loop bn ∗ an is ho-
motopic to the trivial loop since W is simply connected. Consider the maps
αn

0 := f0 ◦ an : [0, 1/2] → G and βn
0 := f0 ◦ bn : [1/2, 1] → G. These are loops

in G hence so is their product βn
0 ∗ αn

0 . Construct the same kind of loops
αn

1 := f1 ◦ an and βn
1 := f1 ◦ bn. The product loop βn

1 ∗ αn
1 is homotopic in G to

βn
0 ∗ αn

0 i.e., [βn
0 ∗ αn

0 ] = [βn
1 ∗ αn

1 ] because f0 is homotopic to f1. It is clear that

βn
1 ∗ αn

1 = βn
0 ∗ ln ∗ αn

0 .

Consequently we can write for the homotopy classes in question
[
βn

1 ∗ αn
1

] = [
βn

0 ∗ ln ∗ αn
0

] = [
βn

0

][
ln

][
αn

0

] = [
βn

0

][
αn

0

][
ln

]
= [

βn
0 ∗ αn

0

][
ln

] = [
βn

1 ∗ αn
1

][
ln

]
.

In the third step we have exploited the fact that a topological group always has
commutative fundamental group (Postnikov, 1987). This shows that [ln] = 1
that is the loop ln is contractible in G for all 0 ≤ n ≤ k in other words the
homotopy F is deformable into a homotopy F ′ yielding f0 and f1 are homotopic
in [(W, x1, . . . , xk, i0), (G, e)] as well. �
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The above proposition enables us to give a more explicit description of the
set (6).

Theorem 3.2. Let (M,g) be a space-time obeying the null energy condition.
Assume it contains a single asymptotically flat region with globally hyperbolic
domain of outer communication. Suppose this region contains a Cauchy surface
homeomorphic to the interior of a compact three-manifold V . Let G be a typical
compact Lie group i.e., let G be U (n) with n ≥ 2, or SO(n), Spin(n) with n �= 4,
or SU (n), Sp(n) for all n, or G2, F4, E6, E7, E8. Then we have

[(V, ∂V, i0), (G, e)] ∼= Z.

Moreover we have

[(V, ∂V, i0), (U (1), e)] ∼= 0,

and

[(V, ∂V, i0), (SO(4), e)] ∼= [(V, ∂V, i0), (Spin(4), e)] ∼= Z ⊕ Z

for the remaining cases.

Proof: In light of the above considerations and Proposition 3.1, we have

[(V, ∂V, i0), (G, e)] ∼= [(W, x1, . . . , xk, i0), (G, e)] ∼= [(W, i0), (G, e)].

Hence we can use the results of Isham who classified the set [(W, i0), (G, e)]
and it is summarized in Isham (1983) in Table 1 on p. 207. But in our case W

is a connected, closed, simply connected three-manifold hence the above result
follows. �

Remark. We mention that assuming the validity of the three dimensional
Poincaré conjecture i.e., if W ∼= S3, then our theorem can be derived without using
Isham’s result since in this case we have simply [(V, ∂V, i0), (G, e)] ∼= π3(G).

We can see by this result that although the homotopy set (6) of effectively
deformable vacua is typically non-trivial, it is remarkable more simple than in
the original calculations of Isham et al. based on topological considerations only.
The homotopy sets listed in Theorem 3.2 are exactly the same as for the flat
Minkowskian case. Being all these vacua gauge equivalent (since N is simply
connected) we have to introduce again linear combinations like (2) in this more
general situation. Consequently we can see that approach (i) to the θ -parameter,
mentioned in the Introduction, still makes sense in the general case.

4. CONCLUSION AND OUTLOOK

In this paper we have studied the concept of θ -vacua in general Yang–
Mills theories. In light of our results, we can see that for outer observers in
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asymptotically flat space-times θ -vacua do occur in a Yang–Mills theory and they
can be constructed in a rigorous way by referring to geometric quantization as
follows.

For simplicity we restrict attention to a simple gauge group G. For the moduli
space V of classical vacuum solutions of a Yang–Mills theory over an asymptot-
ically flat region (N, g|N ) we have the identification V ∼= [(V, ∂V, i0), (G, e)] as
we have seen. Furthermore Theorem 3.2 says that as a set we have a homeomor-
phism V ∼= Z. This space, regarded as a noncompact zero dimensional manifold is
naturally identified with its cotangent bundle T ∗V . This setup resembles the situ-
ation of a real polarization in geometric quantization. Within this framework then
the Hilbert space of the vacuum sector of the corresponding quantum Yang–Mills
theory is identified with the space of L2 functions on V:

HN = {f : V → C | ‖f ‖L2(V) < ∞}.
This means that an element f ∈ HN is described by complex numbers an with
−∞ < n < ∞ satisfying simply

∞∑
n=−∞

|an|2 < ∞.

Assigning to this function f the convergent Fourier series

f (θ ) :=
∞∑

n=−∞
ane

inθ

we identify naturally this vacuum Hilbert space with the space of square integrable
functions on the circle

H(S1) := {f : S1 → C | ‖f ‖L2(S1) < ∞}.
The isomorphism HN

∼= H(S1) provides a very straightforward, natural introduc-
tion of a θ parameter into the vacuum sector of Yang–Mills theories as was done
heuristically in (2). Moreover we can see that the whole quantum vacuum is just
linear combination of θ -vacua. The generalization to non-simple gauge groups
is clear. Observe however that in this picture the role of causality is extremely
important: without it the classical moduli V considered over the whole original
space-time (M,g) would be complicated topologically in the sense that in general
even the connected components of V would be non-zero dimensional manifolds
with non-trivial topology introducing some degeneracy into the vacuum sector.

In summary we can say that despite the possible complicated topology of
the underlying Cauchy surface of an asymptotically flat space-time, the vacuum
structure is similar to the flat Minkowskian case, due to the causal structure
of these space-times which is complicated in the general case, too. Hence the
introduction of the various new CP-violating terms studied in Deser et al. (1980)
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are unnecessary. Taking seriously the causal structure experienced by an observer
also fits with the Heisenberg dictum that quantum field theory should be formulated
in terms of observers.

The suppression of the topology of the underlying Cauchy surface is due
to the result of Galloway or Chruściel–Wald which is a consequence of the
so-called Topological Censorship Theorem of Friedman–Schleich–Witt (1993).
Consequently, the reduction of the problem of the general CP-violation to the
flat Minkowskian case is essentially due to this result. However Topological Cen-
sorship remains valid in a more general (i.e., not only an asymptotically flat)
setting (Galloway et al., 1999); therefore we may expect that our attack on the
first approximation of the CP-problem may continue to hold in these more general
situations.

Finally, natural questions arise: Are there instanton solutions in the corre-
sponding Wick-rotated theories? Recent results on constructing SU (2) instanton
solutions over various gravitational instantons may point towards this possibility
(Etesi, 2003; Etesi and Hausel, 2003). What is the physical relevance of these
solutions? Do they induce semi-classical tunnelings between vacuum states of dif-
ferent effective winding numbers? If the answer for these questions is yes, beyond
(i) we have another, more physical, reason to introduce θ -vacua by concept (ii),
also mentioned in the Introduction.
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